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TRACT I.

ON THE BASES OF GEOMETRY WITH THE

GEOMETRICAL TREATMENT OF J^l.

CONTENTS.

(1) On the Treatment of Ratio between Quantities Incommensurable.

(2) Primary Ideas of the Sphere and Circle. Poles of a Sphere.

(3) Definition and Properties of the Straight Line.

(4) Definition and Properties of the Plane.

(5) Parallel Straight Lines based on the Infinite Area of a Plane Angle.

(6) On the Volume of the Pyramid and Cone.

I. THE RATIO OF INCOMMENSURABLES.

1. IN arithmetic the first ideas of ratio and proportion, and

the laws of passage from one set of 4 proportionals to another, ought
to be learned, as preliminary to geometry; but in geometry the

doctrine of incommensurables requires a special treatment, unless

the learner be well grounded in the argument of infinite converging
series. Repeating decimals may perhaps suffice. Another, possibly

better way, is open by the introduction of VARIABLE quantities,

which will here be proposed.

2. Nothing is simpler than to imagine some geometrical quantity
to vary in shape or size according to some prescribed law. This

must imply at least two quantities varying together. Thus, if an

equilateral triangle change the length of its side, its area also

changes. If the radius of a circle increase or diminish, so does the

length of the circumference. In general two magnitudes X and Y
may vary together: they may be either the same in kind, as the

radius and circumference of a circle is each a length; or the two may
be different in kind, say, a length and an area. In general it is a
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2 VARIABLES WH/C& JJflCltEASE UNIFORMLY.

convenient notatJoVv^o^itpJ)6Q th$t when X changes to X
,
Y changes

to Y .

3. Again, if X receive successive additions x
l
x

t^...xn ,
the cor

responding additions (if additions they be) to Y are well denoted by

y^T/g...^. An obvious and simple case, if it occur, will deserve

notice; namely, if the two variables are so regulated, that equality

in the first set of additions (i.e. ^=a;2
= #

3
= ... ac

n )
induces equality

in the second set; (i.e. 2/1
=r

2/2
=

2/3
== =

2/)- The variables X and Y
are then said to increase uniformly. As an obvious illustration, sup

pose X to be the arc of a circle, and Y the area

of the sector which it bounds, evidently then if

the arcs x
lt
x

9
are equal increments of the arc X,

the sectors y^yz
which are bounded by xjc^ will

be equal increments of Y. Then the arc X and

the sector Y increase together uniformly.

4. We may now establish a theorem highly convenient for ap

plication in geometry, alike whether quantities are commensurable

or incommensurable.

THEOREM. &quot;

If X and Y are any two connected variables, which

begin from zero together, and increase uniformly ; then X varies

proportionably to Y. In other words, if Y become Y when X be

comes X ,
then X is to X as Y is to F .&quot;

Proof. First, suppose X and X commensurable, and % a common

measure, or X=m. (m times f) and X =
n%. We may then sup

pose X and X made up by repeated additions of f . Every time

that X has the increment f, Y will receive a uniform increment

which we may call u; then Fis always the same multiple of v that

X is of
;
thus the equation X =

mj; implies Y=mv, and X = n%

implies Y = nv. Hence X : X = m:n=Y:Y .

Next, when X is not commensurate with X, yet is some sub-

multiple of X, such that n% X, and X contains f more than m
times, but less than (m + 1) times

; evidently we cannot have

X : X = Y : F

(when the four magnitudes are presented to us) unless, as a first

condition, on assuming nv = F, we find Y to contain v more than

m times and less than (m-\- 1) times: and unless this condition were

fulfilled, X and F would not increase uniformly. We may therefore



DISTANCE OR SHORTEST PATH.

assume X
Z
X

3
on opposite sides of X

,
with values

likewise F
2
F

3
on opposite sides of F

,
with values

F
2
= mv, F3

= (m + 1) v.

Then by the first case we have X : X
z
= Y : F

2
and X : X

3
= Y : F

3
.

But X
3
X

2 =j;, and F
3
Y

z
=v. Let n perpetually increase, then f

and v perpetually lessen. X
z
and X

3
run together in X

,
F

2
and F

3

run together in Y . Thus each of the ratios X : X
2
and X : X

5
falls

into X : X
,
and each of the ratios F : F

2 ,
Y : F

3
falls into F : F .

Inevitably then, JT : X = Y : Y
,
even when these last are incom

mensurate. Q.E.D.

II. PRIMARY IDEAS OF THE SPHERE AND CIRCLE.

For the convenience of beginners, POSTULATES may be advanced

concerning the straight line and the plane, as well as concerning

parallel straight lines. But in the second stage of study the whole

topic ought to be treated anew from the beginning: a task which is

here assumed.

On Length and Distance.

THEOREM. &quot; All lengths are numerically comparable.&quot; To make
this clear, it is simplest to imagine a thread indefinitely thin, flexible

and inextensible. This, if applied upon any given line, will become an

exact measure of its length; and if any two lines be then measured

by two threads, the threads are directly comparable, shewing either

that they are equal, or that one is longer than the other and how
much longer. Hereby we safely assert the same fact concerning

any two given lengths.

Obviously, length is continuous magnitude: which means, that if

a point P run along from A to B, the length AP passes through all

magnitude from zero to AB.

THEOREM. Any two given points in space may be joined either

by one path which is shorter than any other possible, or by several

equal paths than which none other is so short. For of all possible

paths joining them some must be needlessly long; yet unless there

is some limit to the shortening, the distance would be nil; the points
would not be two, but would coincide and become one.

12



4 THE SPHERE.

DEF. A shortest path that joins two points in space gives a

measure of their DISTANCE. The same argument applies, if the two

given points and the line that joins them must lie on a given surface;

or again, if two surfaces that do not touch be given, and we speak of

the shortest distance of the two surfaces.

Assume a fixed point A and a second point S so movable as

always to be at the same distance from it. It will be able to play all

round A : therefore its locus will be a surface enclosing A. The

solid mass enclosed is called a SPHERE (Globe or Ball) and A its

CENTRE.

THEOREM. &quot;

Every point outside the sphere is further from the

centre and every point within the sphere is nearer to the centre, than

are the points on the surface.&quot; For if T be an exterior point, every

path joining T to A must pierce the surface in some point $; there

fore the path TSA is longer than SA by the interval TS. Again, if

R be within the sphere, we may imagine an interior sphere whose

surface is at the common distance AR from A. Then S being

exterior to the new sphere, SA is longer than RA
;
that is, R within

the sphere of S is nearer to A than is the locus of S. Q. E. D.

DEF. Two such concentric spheres enclose within their surfaces

a solid called a spherical shell.

THEOREM. &quot;The two surfaces are equidistant, each from the

other.&quot; For if the shortest distance from a point S to the inner sur

face is the path SR, symmetry all round shews at once that if from a

second point S the shortest path will be S R, the two distances SR,

SR will be equal. Indeed it is not amiss to remark, that if any

spherical surface be rigidly attached to its centre, the entire surface

may glide on its own ground without disturbing its centre, because

the distances SA, S A nowhere change. Hence also we may justly

imagine the spherical shell to glide on its own ground, while the

centre suffers no displacement, and any shortest path SR joining

the opposite sides of the shell may assume the place which was

previously held by SR. Actual superposition thus attests equality of

distance.

THEOREM. &quot;

If a spherical surface be given, its centre is deter

mined.&quot; For if an inner point R be assumed at a given distance D
from the surface, its locus is an interior continuous surface. Within

this, at distance D , imagine a point R to generate a second con-
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tinuous surface, and it will be interior to the preceding and so con

tinually. The series of surfaces must then necessarily converge

towards a single point, which will be the centre of the given surface,

because the sum of the distances is the same, from whichever point

we calculate. The same argument proves that all the surfaces are

concentric spheres.

Poles of a Sphere.

THEOREM. &quot; To every point on a sphere one opposite point lies

at the longest distance along the surface.&quot; For if the point P be

given, and we take a point S at any distance from P along the surface,

and suppose S to vary under the sole condition that its distance

from P (along the surface) shall not change, the locus of 8 is a self-

rejoining line enclosing P. (We call this a circle.) Next, beyond

S, along the surface, take a new point T, which moves without

changing its distance from S and from P. This generates an outer

circle, cutting off a part of the surface which was beyond the circle

of S. Beyond this we may similarly form a third circle, and this

series of circles ever lessening the finite area beyond it, will neces

sarily converge towards a point Q on the sphere. P will then be

farther from Q (along the sphere) than any of these parallel circles.

We call P and Q opposite poles of the sphere. The distance between

them is evidently the half girth of the sphere.

Every point on the sphere has not only its own opposite pole ;

but also its system of equidistant (or parallel) circles. The middle

one of these (that is, the one equidistant from the two poles), is

called their equator.

If in an equator whose poles are P and Q, you fix any point

(7, and then proceeding half round the equator fix a second point

D, C and D are evidently opposite poles.

If you imagine a sphere to glide on its own ground, with centre

unmoved, you may suppose P to pass over to the site held pre

viously by Q. This carries Q to the place previously held by P.

Thus the poles are exchangeable, while the sphere as a whole is

unchanged and the same equator is attained.

THEOREM. &quot; If P and R be any two points on a sphere that are

not opposite poles, one equator, and one only, passes through them

both.&quot;



6 THE STRAIGHT LINE.

Proof. Through P and its opposite pole Q (just as above through
the poles C and D) an equator may pass. If this half equator PQ
become rigid and be rigidly attached to the fixed centre A, it still

may sweep over the spherical surface (without change of P or Q)
until it passes through R ;

but after passing once through R, it does

not come back to it, except in a second revolution. Q. E. D.

III. POINTS LYING EVENLY.

In Simson s Euclid, the line whose points lie evenly is called

STRAIGHT
;
but the phrase

&quot;

lying evenly
&quot;

is not explained. We can

now explain it.

When the two poles P and Q, and the centre A, all remain

unchanged, nevertheless each of the parallel circles associated with

P and Q can glide on their own ground. Evidently then, if P and

A be fixed, this suffices to fix Q. In fact while each circle spins

round its own line, Q can only spin round itself. Also, to fix P and Q
fixes A. These parallel circles excellently define to us the idea of

rotation, which is a constrained motion, still possible, even when P,

A, Q are all fixed. Now suppose that a line PMQ internal to the

sphere rigidly connects P with Q. Then if the system revolve round

P, A, Q, PMQ may generate a self-rejoining surface within the sphere.

Again within this new surface a rigid line PNQ may connect P with

Q, and the line PNQ by rotation round P, A, Q may generate a

third surface interior to the preceding ;
and so on continually. Since

there is no limit to the constant thinning of the innermost solid, we

see that a mere line without thickness connects P with Q and passes

through A, which line is interior to all the solids and during rotation

remains immovable. It is called an axis, and can only turn about

itself. Hence every point in this axis lies evenly between P and Q.

And since P and Q may represent any two points in space, we

now discover that between any two there is a unique line lying evenly.

This continuous line, while we talk of rotation round it, is entitled an

axis; but ordinarily we call it simply STRAIGHT.

On the Straight Line and its
&quot;

Direction&quot;

We now infer that

1. Any two points in space can be joined by a straight line,

2. Every part of a straight line is straight.
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3. A unique straight line is determined, when its two end-points

are given.

4. Any part of a straight line, if removed, may take the place of

any equal part of the same. Hence it easily follows that a straight

line, gliding along itself, will prolong itself indefinitely far, either way,

along a determinate course.

We are now able to sharpen our idea of direction. Hitherto we

might say vaguely,
&quot;

Imagine a path to proceed in any direction&quot; that

is, without particular guidance. But now we see, that if ever so short

a straight line be drawn, it points to a definite prolongation beyond

itself, of indefinite extent. This we entitle its direction. If this

direction be changed, a deviation there occurs, and a sharp corner is

recognized at the point of deviation. The amount of deviation

suggests a new kind of magnitude, which will presently need

attention. Now it suffices to remark on the case in which a new line

AZ deviates equally from a previous line PA and from AQ the pro

longation of PA. The equality is tested by imagining AZ to become

an axis of a sphere. Then if P and Q revolve in the same circle, ZA
is equally inclined to AP and to AQ. It is called perpendicular to

PAQ. Evidently Z (on the sphere) is at the distance of a quarter

girth from every point of the equator traced by P and Q.

IV. THE PLANE.

We return to the sphere. When any two poles P, Q are joined

by a straight line, it has been seen that this passes through the

centre A. The line PAQ is called a diameter of the sphere, and

its half (AP or AQ) is called a radius.

Evidently all the radii of the same sphere are equal; and of

different spheres the greater the radius, the greater the sphere.

If an equator CDEG is midway between the poles P, Q, and D
is the pole opposite to C, then as the diameter PQ, so too the dia

meter CD, passes through centre A. This is true, whatever point in

the equator is assumed for C. Therefore CAD is a varying diameter,

whose extremities trace out the equator, while the diameter traces

out a surface in which the equator lies. This surface is called a

PLANE, and in particular is the plane of the equatorial circle.

It was seen that P and Q might exchange places, while the

centre A, and the sphere s surface as a whole, remain unchanged.

Necessarily also the plane of the equator remains unchanged. It is
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then symmetrical on its opposite sides, or in popular language, the

plane turns the same face towards P as towards Q.

The axis PAQ is called perpendicular to the plane of the equator,

being perpendicular to every radius of the equatorial circle.

THEOREM. &quot; No other line but AP can be perpendicular to the

plane of the equator.&quot;

Proof. For if AR be some other radius of the sphere, some one

of the parallel circles, whose pole is P, passes through R, and every

point of this circle is nearer to the equatorial circle than is the pole P.

Therefore the distance of R from the equator is less than a quarter

of the sphere s girth, a fact which shews RA not to be perpen
dicular.

THEOREM. &quot;

Through any two radii AP, AR of a sphere, that are

not in the same straight line, one plane and one only may pass.&quot;

It has been seen that through P and R only one equator can

pass. The plane of this equator is the plane that passes through
the two radii.

Cardinal Property of the Plane.

THEOREM. &quot;

If M and N are any two points in a plane, no point

in the straight line which joins M and N can lie off the plane on

either side.&quot;

Symmetry suffices to establish this truth. Our hypothesis supplies

data to fix what line is meant by MN, but gives no reason why any

point of it should lie off the plane on one side rather than on the

other; for the whole line is determined by merely the extreme

points M, N, of which neither can guide any point towards P rather

than towards Q. Thus there is no adequate reason for deviation

towards either side.

Symmetry of data is in other mathematical topics accepted as

an adequate argument for symmetry of results. Otherwise, &quot;the

want of sufficient reason for diversity&quot; passes as refutation of alleged

diversity. Therefore the argument here presented has nothing really

novel.

We have now a new method of generating a plane that shall

pass through two intersecting straight lines LM, MN. Along ML
let a point E run, and along MN similarly a point F. Join EF
while the motion of E and of F continues. Then EF (by the last
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Theorem) always continues to rest on the plane LMN. This mode of

generating the plane supersedes the idea of rotation. For simplicity

we might suppose ME : MF to retain a fixed ratio.

THEOREM. &quot; A plane has no unique point or centre.&quot;

For if we start from given spherical radii AP, AR through

which passes an (equatorial) plane, in AP take M arbitrarily, and

in AR take N arbitrarily. Then we have seen that the locus of the

moving line MN is our given plane. But again, in this plane take

a fixed point 0, and join to fixed points M and N. Then from the

lines OM, ON we can (as in the last) generate the very same plane,

which can glide on its own ground as the sphere did
;
thus the point

A can pass to without changing the ground or surface as a whole.

The plane is infinite, the sphere is finite
;
but as with the sphere,

so with the plane, no point of the surface is unique.

After this, no impediment from logic forbids our passing to the

received routine of Plane Geometry, until we are arrested by the

difficulty of parallel straight lines, to which I proceed, after one

remark on the definition of an angle.

Above, a sharp corner or turn was identified with deviation, or

change of direction. In geometry it has the name of an angle, and

we measure its magnitude by aid of the circular arc which it sub

tends at the centre or by the sector of that arc. But no insuperable

logic forbids our estimating the magnitude of an angle by the portion

of the infinite area which it intercepts from a plane ;
which indeed

is suggested by a perpetual elongation of the radius of the circle

whose sector was assumed as measure of the angle.

Monsieur Vincent in Paris (1837) adopted this definition as

adequate to demonstrate the equivalent of Euclid s Twelfth Axiom
without any new axiom at all. Has this method received due

attention in England ?

Monsieur Vincent was not the first to suggest accepting the

infinite plane area cut off by two intersecting straight lines, as the

measure of the angle which they enclose : but perhaps he was the

first to introduce the method into a treatise on Elementary Geometry,
that obtained acceptance in so high an institution as the University
of France.

Two lemmas alone are wanted, and these every beginner will find

natural.
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LEMMA I. &quot;Every angle is a finite fraction of a right angle;&quot;

that is, some finite multiple of it exceeds 90. For the circular arc

which subtends it, is always some finite fraction of the quarter of

the circumference.

DEF. When two straight lines AM, BN in the same plane are

both perpendicular to a third straight line AB, we call that portion of

the plane area which is enclosed between MA, AB and BN a BAND.

LEMMA II. Then, I say, whatever the breadth (AB) of the band,

the area of the band is less than any finite fraction of a right angle.

Proof. Prolong AB indefinitely to X, and along it take any
number of equal lengths AB BG = CD = DE, &c., and through

C, D, E... draw perpendicular to ABODE... straight lines CO, DP,
EQ, &c. Evidently then the successive bands are equal, by superposi

tion. Thus, whatever multiple of the first band be deducted from

the plane area marked off by the right angle MAX, the loss is

insensible
; for, as remainder, we find the area marked off still by a

right angle (such as QEX, if only four bands were deducted). Any
two right angles embrace areas which can be identified by super

position, and have no appreciable difference. The matter may be

concisely summed up by remarking, that every band is infinite in

one direction only, say, horizontally but the area embraced by any

right angle is infinite in both directions, horizontally and also verti

cally. Thus it is no paradox to say, that no finite multiple of the

band can, by its deduction from the area of the right angle, lessen

that infinite area in our estimate. Q.E.D.

Euclid s Twelfth Axiom is now an immediate corollary ;
viz. If

MABN be any band
; and, within the right B

angle NBA, any straight line BT be drawn,

it can be prolonged so far as to meet the

prolongation of AM. For the angle NBT
is a finite fraction of a right angle, while

the band MBAN is less than any finite fraction of the same
;
hence

the angle NBT is greater than the band MABN, but unless BT
crossed AM this would be false. Thus of necessity the two lines

do cross, as we asserted.

T

M

I cannot see any new axiom involved in this proof: therefore

I am forced to abandon several other specious methods and give it



VOLUME OF PARALLELEPIPEDON. 11

preference. Surely we may bow to the authority of the University
of France in such a matter.

On the Volume of Pyramids and Cones.

The treatment of this topic in Euclid is very clumsy. It demands

and it admits much improvement.

1. For parallelepipeda prove first, that if two such solids differ

solely in the length of one edge, which we may call x in the one

and a in the other, then their volumes are in the proportion of

x : a.

2. Next, if they have a solid angle in common, but the edges

round it are in one x, y, z, and in the other a, b, c, then the two

volumes are in the proportion of xyz : abc.

3. After this it is easily shewn that parallelepipeda on the same

base and equal height have equal volumes.

4. Therefore finally, that the volume of a parallelepipedon is

measured by its base x its height. COR. The same is true of any

prism.

From this we proceed to approximate to the volume of a pyramid.

5. Divide the height (h) into (n) equal parts by (n 1) planes

all parallel to the base (B). Establish, on these (n-l) bases,

upright walls, and you will find you have constituted a double

system of prisms, one interior to the pyramid, one exterior; the

latter has the lowest prism in excess of the other system. Every
base is similar to every other, by the nature of a pyramid. The

volume here of every prism is - x its base, the number n and -
being

the same for all, but the base varying.
M

6. The base whose distance from the vertex is -
. h, is to the

n
r*

original (B) as r
2

: ri*
;
hence its area is -5 . B, which gives for the

n

volume of the prism standing on it ( -5 .B\ .
-

. Hence the sum of

the volumes of the external prisms is
5 .

-
. B, and

by omitting ri? from the numerator of the larger fraction we obtain
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the sum of volumes for the internal prisms. Now since -
8

vanishes when h, B are finite and n infinite, the difference of the

two systems of prisms vanishes when n is infinite. But the volume

of the pyramid is less than the exterior system and greater than the

interior
;
hence each system has the volume of the pyramid for its

limit, when n increases indefinitely.

7. Let
fju

be the unknown numerical limit to which the fraction

I
2 _u 2

2 + 3
2
4- ri*

3 approximates when n thus increases. Then the

volume of the pyramid = //,
. h . B. Since

//,
is the limit of a numerical

fraction, which remains the same, whatever the form of the pyramid s

base, we shall know the value of
//,

for all pyramids, if we can find

it in one. Meanwhile the result V=/jt,.h.B at once shews that

pyramids with equal base and equal height have equal volume, since

yu,
is the same for all.

8. When this theorem has been attained, we have only to divide

a triangular prism into three pyramids, and instantly infer that the

3 are equal among themselves; therefore that each has a volume

just J of the prism, i.e. equal ^h.B.

This, being proved of a pyramid whose base is a triangle, shews

that the unknown
//,

is there exactly J.

Hence universally //,
=

J, and volume of every pyramid = J/t . B, or

is equal to J of the prism which has the same base and height.

COR. Every cone also is one third of the cylinder which has the

same base and height.



TRACT II.

GEOMETRICAL TREATMENT OF *J -I.

1. In pure algebra, concerned with number only, the symbols +
and

, denoting addition and subtraction, in an early stage needed

elucidation when the mark of minus was doubled. It is found natural

that (-f a) and +( a) should both mean a, but that (a) should

mean + a, and ( a) .
( 6) should be + (ab) surprises a beginner, and

is illustrated by urging that to subtract a debt increases the debtor s

property, and to subtract cold is to add heat. But as soon as we

apply algebra to geometry, the symbols + and are still better

interpreted of reverse direction; also time past and time coming
afford equally good illustration. Distinguishing positive and negative

direction along a line, we find no mystery in the fact that to reverse

negative direction is to make it positive, so that
( a) gives + a,

as reasonably as (+ a) gives a. If we know beforehand whether

a given distance is to be counted positively or negatively along a

given axis, no ambiguity is incurred, and the sign + or generally

gives the needful information. For this reason some are apt to think

of + a and a as different numbers, instead of the same number

differently directed. Out of this rises the learner s natural complaint
when he meets *J 1 or *J 5. &quot;There is no such number: you confess

it is imaginary: a proposition involving it has no sense.&quot; So murmurs

every scrupulous and wary beginner: and the teacher s reply, &quot;Some

how we work out useful results by \A 1,&quot;
sounds like saying: &quot;Out

of this nonsense useful truth is elicited.&quot;

2. The first reply to be made is: No one ought to desire any
number for J 1 except the unit itself; the V which precedes,

though a double symbol, has the force of a symbol only. The next

reply is decisive, the double symbol V points to a new direction

in geometry; namely, the direction perpendicular to + 1 and 1.

But to explain this fully, it is better to make a new beginning.
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Suppose that radii issue in many directions from a fixed point in

a plane, and that distances are counted along them. So long as we

know along which radius we are to count, nothing new is involved,

and of course no difficulty. Suppose one of these radii to be our

ordinary positive axis, another to be called the m radius, and for

distinction write the index m under every number to be counted

along it, so that l m is its unit, in length
= 1 as estimated absolutely.

Then we deal with ambmcm ... along the m line, and combine a,n bm ,

and interpret oam) 56
Trt

6cw ,
without difficulty or fear, since all are

lengths to be counted along the same radius. But such a product

as am . bn would need careful interpretation. In abn no obscurity is

found, whether the a be linear or numerical. If linear, we proceed

as in interpreting aW, though space has only three dimensions. . If

we put A for the value of ab3

,
we attain it by the proportion

1 : a = b* : A, so that A is the same in kind as 6
3

. Similarly if

A =dbn ,
we are able to count A along the n radius, whether a be

simply numerical, or when it is linear, by aid of the ratios 1 : a = bn : A .

But if we proceed thus with am .bn , using the proportion

1. :, = &: A ,

we confound ambn with dbn \
for lm : am is the same ratio as 1 : a.

3. Mr Warren in 1826 laid a logical basis for this matter by his

treatise on *J 1, which I here substantially follow, and wonder that

it is not found in all elementary works. He virtually distinguishes

between proportionate lengths and proportionate lines. In the former,

DIRECTION is not regarded ;
with the latter, it is essential. Thus if

A, B, C, D are proportionate lengths, but are drawn along our radii,

viz. A along the positive axis, B along the m radius, G on the n

radius and D on the p radius, we do not pronounce these lines pro

portional, unless also their directions justify it; that is, ihe p radius

must be disposed towards the n radius, as is the m radius to the

positive axis. This amounts to saying that the p line must lie on

the same side of the n line, and at the same

angular distance from it, as the m line com

pared with the positive axis. Then, if OL,

OM, ON, OP be the 4 radii, and LMNP a cir

cular arc, we need that the arc PN shall

= arc ML before we admit that the units
**- fc~

OL, OM, ON, OP are proportionate lines.

After this condition of the directions is fulfilled, we concede that
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the proportionate lengths counted along them are also proportionate

lines.

If the arc NP arc LM, add MN to both, then arcPM = arc NL.

This enables us to exchange the second and third terms in the pro

portion, agreeably to the process called Alternando. Also the arc

PL = PN+ NL = ML + NL. Hence if we count from L, and call

arc LM m, arc LN=n, arc LP =
p, the test of necessary direction

is p = m + n.

The simplest case is, when the four proportionals become three

by the second and third coalescing, as ifM and N run together in Q.

Then if arc ZQ = arc QP, we have OL : OQ = OQ : OP. If further

arc PR = arc PQ, then OQ : OP = OP : OR] and so on.

4. Apply now this to the case in which the arcs PQ and QL are

both quadrants. Then OQ is the mean pro

portional between OL(= 1) and OP=( 1).

The received symbol for a mean proportion

is V, as in OQ = ^OP.OL. Here then

OQ = V(- 1 . 1)
= V- 1. This is only a fol

lowing out of analogy with the symbol;

though, previously, V expressed the mean

proportion between numbers, or perhaps lengths, without cognizance

of direction.

Now, our first care must be, to inquire whether V~ as a symbol
of direction, has the same properties as when it operates on a pure
number.

First, in combining factors, the order is indifferent, as ab ba, and

a . (1)
= a = 1 . a. We ask, does \/ fulfil this condition? Evidently,

a.J 1 = V 1
,
each measuring the length a, directed along the

perpendicular OQ. Similarly

a . V & = V b .a = b \/ I .a = ba*J I.

Next, repeat V-. We had OQ = OL V- 1 or V~ 1 OZ. Also

OP = V-1-OQ, because QOP = 90, /. OP = V~ 1 .(V - 1 - OL).
But OP=-OL or - 1 . OZ. Evidently then V - 1 . V - 1 is equi

valent to 1. This further justifies the change of - r to \/ 1.

5. But a new difficulty arises in adding unlike quantities, i.e. in

connecting them by +. If along radii m and n we have two lengths
am and bn ,

what meaning can we attach to am +bn ? This urgently
needs explanation. It may seem that the symbol + (plus) receives
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a new sense. Now in fact when (a + b)
= zero, the + does not strictly

mean addition; it really expresses a difference, not a sum; but not

to embarrass generalization, we call it a sum, and say that either a or

6 is negative. They may mean the very same line OL estimated in

opposite directions, as OL and LO. If OL mean the line as travelled

from to L, and LO the same as travelled from L to 0, the state

ment OL + LO = zero, clearly means that the total result of such

travel is nothing ;
since the travel neutralizes itself. Thus if, instead

of saying that the sum is zero, which gives only a numerical idea, I

call total result zero, you will gain a geometrical idea. At this we
must aim, when we deal with lines differing in direction. Evidently,

if, starting from any point in the outline of a limited surface, a point

travel round the circuit, until it regain its original place, we may
justly say, the total result of such change is zero; and no one will

suppose it to mean that the length of the circuit is zero. So if there

be a triangle ABC, we may say, the total result of the travel

AB + BC + GA = 0, if it be understood that each line is to be esti

mated in a different direction. Indeed, suppose the lengths of the

three sides are c, a, b, then in the equation cm + an + bp
= 0, the

symbol + cannot mislead us, though its sense is evidently enlarged

from sum to total result.

Again, since AB + BC + GA = and GA AC, when direction

is considered, we have AB + BC AG =
0, which further justifies

AB + BO = AC. The last is interpretable, &quot;Motion along two

successive sides of a triangle yields the same total result as motion

along the third side.&quot;

The word resultant characterizes mechanics, but there seems no

objection to adopting it in geometry also for the total result, as

distinguished from the sum.

6. In fact we have unawares made a great step forward; for the

symbol \/ now enables us to express distance in every direction. If

our parallelogram become a rectangle, and AB is the ordinary positive

axis, and (as before), the lengths of AB, BC, GA are c, a, b, we have

BC=a*J 1 when direction is estimated, and AC = total result of c

and a V~ 1, or AC (an oblique line)
= c + a v/- 1. Since c and a are

independent lengths, AC may have any direction whatever.

But again, we must inquire whether the symbol +, thus extended,

can be worked in the received method. First, does it fulfil the

fundamental condition expressed by A + B = B + A? Assuming (as
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O

we must) the doctrine of parallel straight lines, and considering any

rectangle whose sides are a and c, we find

that c+ a\/ 1 = the diagonal = a\/ 1-j-c

from the opposite sides. Next, does it-

fulfil the condition h(a + B) = hA + hB?

The doctrine of similar triangles at once

affirms it. Let OM= x, MP =
y, per

pendicular to it; join OP, then if OM is

the positive axis, and y expresses mere

length, we write

OP or OM + MP = x +

Next, along OM take Om Jix\ that is 1 : /* = x : Om (whether h is

linear or numerical). Erect mp perpendicular to Om and meeting OP
in p. Then by similar triangles, mp = h . y (in length) and Op = h . OP.

In this h . OP = Op we have supposed h to be numerical.

Also OP is equivalent to x + *J 1 .y,

and Op to Om + mp *J 1 or hx 4- V 1 . %,

that is, h (x + \/ ly) = hx -f V - 1 %,

just as if \/ 1 were numerical.

If further we change h from a mere number to a positive length,
it affects every term of the last in the same ratio, and leaves equi
valence as before.

If we have proved generally that with any factor h (provided
it be counted along the positive axis) the product h (x + \/ 1 . y) is

equivalent to hx + */l.hy, the same is virtually proved, if h be

changed into hm ,
that is, if the numerical h be computed along an

m-axis. For we may transform our hypo-thesis, by choosing the m-axis

as positive. If hereby #, y change to a?
, y , we obtain a result the

same inform as the previous result, and x
, y remain quite as general

as were the x, y. Thus we may write

\n - 0* + V- ty)
= hx + V- 1 h^/.

After this, we can change the oblique hm into a + *J 1 . b, where a. b

are along the positive axis. Now if the m-axis be perpendicular to

the positive, we may write simply hm kij 1, where k is along the

positive axis. Then V - 1 . hmy =V- 1 . V - 1 . by, and since each V- 1

N. 2
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denotes revolution of the ky through 90, the *J I .*JI shews

revolution through 180, or is equivalent to the symbol . Thus

Jijx + V- ly)
= \/- 1 . k(x + v- ly)

= V- 1 lex + V- 1 - k . V- 1 . y

=
A/ \kx ky

exactly as if\/l were numerical. Evidently then the same holds

good in multiplying out (h + ^lk) into (x + \J ly).

THEOREM. If A +BJ1 = C+DJ-1, this implies two equali

ties, viz. A=C and B = D. The geometrical proof appeals at once to

the eye. If OA be the positive axis, and

the binomials are denoted by OP and OQ,
viz. A+J-IB = OP and(7 + V-l = OQ,
we do not account OP = OQ until they

have the same direction, as well as the

same length. This requires Q to coincide
&quot;A

with P. Of course then, if PM, QN are

dropt perpendicular to OA we have OM = A, PM = B*J-l, ON=C,
QN=D V 1 and as soon as OP= OQ in our hypothesis, P coincides

with Q, therefore also M with N. That is A = C and B = D.

The reader will now see the geometrical meaning of the &quot;imaginary

roots&quot; (so called) of a quadratic equation. As a very simple case,

take first

a? - IQx + 63 = 0, which yields x = 8 1.

Here both roots lie along the positive axis. But change G3 to 65,

then a? 16x -f- 65 = 0, whence x = 8 \/ 1.

In the latter the two roots are equal radii drawn from the origin

at equal angles on opposite sides, radii which terminate where the

coordinate along the axis is 8, and the transverse coordinate is + 1.



TRACT III.

ON FACTORIALS.

SUPPLEMENT II.

Extension of the Binomial Theorem.

1. THE following appeared in Cauchy s elementary treatise, as

early, I think, as 1825, but without the new Factorial Notation, which

adds much to its simplicity. Boole writes # (2) for x (x 1), # (3) for

x (x - 1) (x 2), and x (n] for x (x
-

1) (x 2) . . . (x n + 1), whence

tf
(n+1) = x (n]

. (x n). Better still it is, to place the exponent in a

half-oval, since a parenthesis ought to be ad libitum. I propose
&amp;gt; which are quite distinctive. Then the Binomial Theorem is

In this notation 1 . 2 . 3 . 4 . . . n or n (n
-

1) . . . 2 . 1 is n^. Guder-

mann for this has n
;
but (n 1) is less striking to the eye than

n, |w
1 introduced by the late Professor Jarrett. This exhibits in

the Binomial Theorem its general term, by

+ #= + n . + ... +n^ . + ... + *&quot;;

of course x^L&amp;lt; is equivalent to simple x.

The Exponent (of a power) is already distinguished from an

Index. In a Factorial x^ for x (x 1) (x 2). . .(x r 1) one may
call r (which must be integer) the Numero, as stating the number of

factors.
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2. If m, n, p be all positive integers, and p = m -f n, then

or, in condensed expansion,

xr

This equation being of the (m + n)
th or p

ih
degree of ar, and being

true for values of x indefinite in number (therefore in more than

p values), must be equal term by term for every power of x. Now
when we multiply any two such series,

(1 + MjX + Mj? +Mz
x* + etc.) by (1 + N^x + Nj? + etc.),

we have a product of the same form

by the routine of multiplication, in which

Pt-Mt + Nj P
t
=M

t +Ml
N

l + Nt ;
P

3
= M

3

and the law of the indices is so visible, that we get generally

This being true for all series of this form may be applied to the

three series (1 + x)
m

, (1 + #)&quot;, (1 +x)
p

,
and at once it yields to us the

result

n m n-&amp;gt; m
+ &quot;&quot;f &quot;&quot;&quot;

an equation true for more values of m and n than are counted by the

integer r, therefore it is true also when m and n are arbitrary and

fractional. Write x for m, h for n, and x + h for p, and you have an

extension of the ordinary (x + h)
r
. For, this latter may be written

(x + hY xr xr ~ l h xr -*
h* a*

3
7r hr

\ / __ __I__ ___l__ __
|
__ ___L. _i__

I I 1 t * l .)
*

I O O *
I &amp;gt;

^^ * *
I M &amp;gt;

[r |r |r-l 1 |r-a
*

[2
r-3

1

3
|

r

with exponents replacing the numeros of the preceding.

NOTE. The reader must carefully observe in that which follows, that the upper
index of P, Q, A, B, C, is not an exponent.
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Powers in Series of Factorials.

3. Since x^ = x(x- 1)
= x*-x,

of which the eneral law is

conversely $ #&amp;lt;^ + %

Again x, = x (x
-

1) (x
-

2)
= x5 -

But

Evidently we can thus in succession obtain x4

,
x5

,... and generally

xn
in series of x^, x^, aX3

t
... x^, x.

Since only x^L contains xn
,
its coefficient must be 1. In general,

with unknown coefficients P, dependent on n, but not involving x,

we may write

xn = P? . x^ + Pr 1 3Z2 +Pr^ + . . - + PI _ 2
^^ + Pi^flf. . .(a).

Here the lower index denotes the place of the term in the series
;

the sum of upper and lower index = n, the exponent of xn
;
and the

upper index is the same as the numero of its term. We have also

seen that PO = !, whatever n may be. It remains to calculate Pn
r

~ T
.

Multiply the left member of (a) by x, and on the right multiply the

successive terms by the equivalents of x, viz.

(x-n) + n, (a!-n + l) + (n-l)9 (x
- n + 2) + (n

-
2), etc.,

and apply to each term the formula x^ .(x r)
= xr

^2. Then

1
.^ + (n

-
2)P^ ^-2) + . . .

).

+ 2Pt 2
^ + lP1

_ 1

But if in (a) we write (n + 1) for n, we have

^ + . . . + P;_! x^ + P\x. . .(c),

and we cannot be wrong in identifying (6) and (c) ;
that is, in equat

ing the coefficients belonging to every particular numero (r). At the

right hand end P^= IP,
1

^, coefficients of a?; i.e. since when n = 2,

x, so that PJ = 1,

P 1
1 P 1

1. . J.
3

1
,

-t
3 1

,



22 . INVESTIGATION OF TABLE

and universally P\ 1, just as P^ = 1. Also in general we find

_ rpr , pr-ll-r r* n-r T J
n+l-r&amp;gt;

otherwise, P; = rP;^ + P
r

p \

if ) = n + 1 r.

This enables us to fill in the vacancies of a table, beginning from

1
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the work of one computer may avail for many after him. We may
assume

where, as before, obviously Qj=l. Also dividing by x, and then

making x = 0, you have

OlIlCG ( CC &quot;~ 7Z ) OC^*s OC^*-s *

multiply (a) by x n,

- nQ *x
n + ?iQ*-V1 - etc. . . . nQl_ n_x? + nQ}^

Also in (a) write n + 1 for n
;

But (b) and (c) ought to be identical. We have anticipated the

remarks that
Q&quot;

+l = Q &quot;=
1, and QJ,= nQ

l

n_^ inasmuch as

But generally, Q

or, if 71
- r = m, C;

)l

+1
=

(771 + r) $? + Q +\\

As before, this enables us to continue the table, when the first row

and first column are known. To compare our formula with that of

the first table, we may write it

In fact, the first row is unity as before. The first column is

1, 1, 1.2, 1.2.3, 1.2.3.4,

when r = 0, Q? = mQZ+Qr\
also in the former table, when

n = r, I = rP:+I- 1

.

Hence the second row is the same in the new table as in the old.

To compute the third row from the second :

1
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The multiplier r + (p 1) combining upper and lower index of

its Q distinguishes the Q table from the P table: thus

1.2.3

1.2.3.4

11
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that when x is numerically less than 1, with n indefinitely increasing,

the series 1 + % + x* + . . . + xn
tends to the limit

_,
.

1 x

After this it quickly follows (by Cauchy s process now perhaps

universal), from Binomial Theorem with n positive integer, that

l\
n

1 + -I with n infinite, has for limit

(\
n

1 -f
-

] has for limit
nj

which also = e
a

. On this we need not here dwell : but it will

presently be assumed. Now let us propound

Factorials with Negative Numero.

6. Analogy suggests to define x^l- as meaning -? : f course

will be identical with x~
l
. Then x^ will stand for

and x^&amp;gt; for [x (x + 1) (x + 2) . . . (x + n - l)]~\

Hence 0O1 = (x + n)~
l

. a?O.

Now x^&amp;gt;
= (x + 1)^^,

and when x is &amp;gt; 1, we have, in descending powers

x^ = x~* x~
3 + x~* x~

b + etc.

Also x^ =
(x + 3)

-1
. oc^

of the two factors here on the right, each can take the form of

a series descending in powers of x. So then their product, the

equivalent of x^. By like reasoning we claim a right to assume

with coefficients independent of x,

arid our task is to discover the coefficients when n is given.
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First make n = 1,

/. x^ = A\x-*-A\x-* + A\x *-A\x-*+ete.

But from the series already obtained for x&amp;lt;l^ we see that every

coefficient of the last is 1
;
or in general A\ 1. This gives the first

column of our table. Also universally A&quot; obviously
= 1

;
which fixes

the first row of the table.

Next, multiply equation (a) by (x + n), and you get

x^ = x-
n
-Alx-

n - l + Alx- n L&amp;gt;

-etc. ... A n
r x~

n - r
+ ... )

+ nx-
n - 1

-n.A?x-
n
-*+etc. ... +nA^x n - r

+ ...}
&quot;^

&quot;

But in (a) we may write n for n+ 1, which gives

x^ =
x-&quot;-A^

l x H- 1

+... A n
r

~ l
x~

n - r
+ ............ (c).

Now (6) and (c) must be identical, hence

and generally A n
r
= nA n

r _^ -f A&quot;

1

.

But this is exactly the law of P in Art. 3, only there we had r, p for

what are here n, r. Now as the first row and first column are here,

as there, unity, and the law of continuation the same, the whole table

will be the same, and we may write P of Art. 3 in place of this A.

Thus we get

x^ = x~
n - Pl~

l
x~

n -
1 + PrV n - J - PJ- V&quot;-

s + etc. ...

with the same values of P as before. But in the last equation we no

longer take the P s diagonally, but vertically, down the column, as

the same upper index (n 1) above every P denotes
;
thus

x-^ = x~
s - 3x-* + lx~

5 - lox~ 6 + Six 7 - etc. . . .

To verify, multiply by x + 2. But for convergence x ought to

exceed 2. So

+ etc. . . .

and for convergence, x ought to exceed 3. Evidently in the series for

#O, x ought to exceed (n 1).

7. Assume now the Inverse Problem, to develop x~
n

in series of

Factorials.

With unknown coefficients B independent of x, we start from
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Multiply the lefthand by x, and the successive terms on the right

by the equivalents of x, viz.

(x + n)-n, (x + n + l)-(n + I), (x + n + 2)
-

(n + 2), etc.

Observe that (x +p) x(
~p ~

l] = x(
~
p]

;

.-. x-
n = x(^ + Bl.x^+...+Bn

r .x^+... \
-n.x(^-(n + l)B?.x^-...-()i + r).B

n
rx-^ -...)

But in (a) we may write n for n + 1, which gives

af
n = x^ + B^x^l + B?2

- lx^? + ...+
B&amp;gt;;-\

aNU + ...... (c).

Identify (b) with (c),

and generally Bn
r
=

(n + r -

the same formula as for Q in Art. 4, only n and r here standing for

what there was r and p. Also since .By =1, the top row is unity,

here as there.

We may further prove that the first column of our B s is the

same as the first column of the Q s. For

x~
z = x^ + B\x^ + B\x^ + ... &c.

Multiply by x on the left, also by (x + 1) 1, (x + 2)
-

2,

(x + 3) 3, for the successive terms on the right ;
then

Obviously of
1 = x^

;
and the other terms must annihilate them

selves, making B\ - 1 =
; B\ - 2B\ = ; B\ - 35^ = ; etc.,

or 5J = 1, ^ = 2; = 1.2;

5J= 3BJ =1.2. 3, and B\= 1 . 2 . 3 ... (n
-

l)n.

Thus Bl = Ql, Bl = Ql, etc. exact. Therefore the B table is the

same as the Q table throughout.

Here also we take the Q s vertically, to obtain x~
n

in series of

factorials as a?&quot;

4 = x^ + x^&amp;gt; + %5x^ + 225#c5- + etc.

In general x~
n = x^ + Qr

1^ + Qr
1^ + + G^

1

- ^^r + etc.
;

but special inquiry is needed concerning convergence. Apparently
it converges more rapidly than

af
2 + (x + I)&quot;

2 + (x + 2)
2 + etc.
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{x
#2 #8

so* }

n

T + To + To + Tl + etc.
|

in powers

of xn. We may assume for this the form

Mnx
n +Mn+lx

n+l + . . . +Mr
xr + etc.,

where Jfn manifestly
= 1, and if r is less than w, Mr

0. Now by
the Binomial Theorem where n is a positive integer

(e
* _

i)
=

e&quot;
-
j

(n
-
1)a; +~ . 6*-

1
&quot; - etc.

j
e* +1,

out of which we have to pick up the partial coefficients of xr which

make up Mp observing that

f)x r?x* p
3
a?f.i +

-+|-
+%+ etc.

in which we have to make p successively n, n 1, n 2, ... When
wW

we make p = n, the only term that here concerns us is -
. When

n (n l)
r
.af ~

7

p = n 1, we get r- . . When p = n 2, we have

(n
-

2)
r

. xr

jr

and so on. All have \r in the denominator. Hence

M
r

. \r=^n
r

-^(n-l)
r + lo

-
.(n-2)

r
-etc. ...to w terms,

1

JL \L
lo
\L

Tl

of which the last is + -
. I

2
.

Let N be to (n + 1) whatM is to ??
; then, with r the same for both,

.\r
=

(n + ir-~-(nY

. (
- 2/ + . . . to (n + 1) terms.

Add this to the preceding, coupling every pair that with the

same value of p has (n p)
r
as factor

;
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n + 1
n

7i + l _ n 1 n + 1 n 2
Observe that 1 = ?i,

~~2 ~^~~ ?

and so on
;

. .

|r
. (3/r + JV

r)
-

(71 + 1)&quot;

-
j (7i)

r + ^-jp (w
-

l)
r -

etc.,

or, in shorter notation,

2 3

-
(n + l)

r- ?

^
. (??)

r +^ . (n
-

l)
r -

-j-
. (n

-
2)

2 + etc. to (w + 1) terms.

But in N
r change r to r + 1 and you have

1.71.71 - 1 x ^\r+-2 /

i~o Q
&quot; ~

(
n ~ 2

) + etc&amp;lt; - to
(?i + 1) terms

JL Z O

7i . n 1 . n 2 ,

1.3.8 (- 2

=
(72 + 1) .

|r (Jl/r + -A
r
r),

from above. Divide by (?i + 1) .

\r
4- 1

;

Ti + 1 r + 1

Our r always exceeds n. We simplify the notation somewhat by

assuming as coefficients after dividing by xn
}

-
_ __

x ) 7i+l n + 1. 7i+2 n + l.n + 2n

7^ + 1 . n + 2 ...

Multiply by xn
. The general term becomes

etc.

2) . . (n
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Put n + p = r, to identify this term with our previous Mr
. xr

;

r w + l.n+2. + 3 ... (r-l).r

so that N =---^^--- with one less factor in denomina-
.n + 3 ...r I .r

tor: but when both n and r in M
r
are increased by 1, r n undergoes

&quot; +1

no change ;
and N

,

t

=--

Introduce these values into (a) and multiply by

(n + l) (in-2) ...r.(r+l), .-. C; =
C&quot;r _ n + (n + 1) . C^., ...... (6).

Change r ntop and n 4- 1 to n, /. Oj
=

C^&quot;

1 + nC&quot;^ ;
the same

law as for the P s in Art. 3.

Also when n = 1
,

x x* xr

But we assumed as equivalent

.

1 I _J__ I___f_ I__rf
I I__^_ I

2
r
t

&amp;lt;*T2..-..^
T r

t.S.

which identifies C l

r with 1, for all values of r. Just so Pl

r
= 1 in its

first column. Also evidently Cj = 1
; just as PQ=!, in the whole

first row. Thus, with first column and first row identical with those

of P and the same law of continuation, the whole table is the same.

Finally then we obtain

in which the increasing numerators are pulled down by increasing

denominators.

The general term may be written n^- . Pj) . x p
,
or equally

[The course of analysis here pursued forestalls that of A&quot; . O
r
to

the learner.]

Thus

&amp;lt;*

IXK JXI
n + 1 . ?? + 2

+
n + 1 . n + 2 . ??.. + 3

+ ctc
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9. To investigate log (1 + x) in series, with no aid from (1 + x)
n

except in the elementary case of n being a positive integer, and no

aid from the Higher Calculus.

Let y = e
x

1, then x = log (1 + y). Also

x x* as
3

2/==
i
+n +

i72T3
+

by elementary algebra.

From the last we see that for minute values of a?, as a first

approximation, y x, and a? = y*. As a second, y = x + ^x
2

,
= x + \y

l

,

. . x = y \y
z
. Whatever the series in powers of x, x can be thus

reverted into powers of y, at least within certain limits. Hence we

may assume with unknown coefficients called A,

xorlog(I + y)
= y-A t2y*+A 3y

3

-A^y
4 + etc....... (a),

which (with the appropriate numerical values of A^A 3
A

4 ...) will be

an identical equation.

Consequently, writing y -f- z for y y

log(l+y + z)
=

(y + z)-A z (y + z)
2 +A.d (y + z)

3 + etc. . . . (6).

Subtract (a) from (b) developing the powers

then

+ A a (3y*z + 3^
2 + *

3

)
- A

3 (kfz + 0&amp;gt;ifz*
+ 4y* + z

4

) + etc. . . . (c).

But the left hand = log .
-- -- - or log f 1 + -J

which again,

by (a), if we write -- for y, has for equivalent

of which the first term alone contains the simple power of z, and there

its whole coefficient is f--
)

. This then must be the sum of the

U+jf/
partial coefficients of z found in (c).

That is -L- = 1 - 2A
2y + 3Atf - 4Arf + etc.

But = = 1 - y + y
2

2/

3
4- etc. when y is numerically less than 1.

l+y
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Hence 2A
Z
= 1, 3^1

3
= 1, 4&amp;gt;A

4
= 1, . . . nA n

= 1, or in general A n
= -

.

Finally then, log (1 + y)
= y - \f + ly*

-
ly* + etc. . . . while f &amp;lt; 1.

N.B. This furnishes the means of computing logarithms in

Elementary Algebra, before knowing the Binomial Theorem with

negative or fractional exponent. If Differentiation or &quot;

Derivation,&quot;

as far as $(x) = x*\ (j) (as)
= nxn

~l

,
be admitted, this equation at once

proves that when $ (z) means log (z\ &amp;lt;/&amp;gt; (z)
-

: a process which

eases the next Article.

10. PROBLEM. To develop [log . 1 + x]
n
in a series of powers of x.

That this is possible, when x* is &amp;lt; 1, the preceding Article shows.

We may then assume, with unknown coefficients X, X? ,
X&quot; ... depend

ing on n alone, where the upper index is not an exponent,

-\ n ~n+l -x n n+2

-
J
2

-- -etc....
+ 1 . n+ 2

\n
r . xn+r

+ etc~
n + 1 . n + 2 . . . n + r

If log 1 + x = u, 2 = un
,
dz = nun~l

du, and du = -
. [It is

-L ~f~ 00

hardly worth while to disguise Differentials by a more elaborate and

tedious Algebra.]

Differentiate both sides of (a), then drop the common factor dx :

t 1 I** \-LV - Si -1-
I Wf M 1 -V M . j

hereby, f ~ = rwf - Xw
. ^n H : etc. . . .J 1 +x n+l

n + l.n + 2~(n + r-l)
T etc

Multiply by 1 + x, and divide by n,

:. (W 1 + x&amp;gt;

n~* = x
n~l -

X^ . + 2 - - etc.
v n n . n + l

n+r-l

-
N + etc.

~n.n+\...(n + r 1)
-vn n+1 -^n n+r-l

_ *3-lf + etc. + - 7--^ -=-. etc.
n n . n + 1 . . . (n + r 2)

N.
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But writing (n 1) for n in equation (a) we get

n . n
+ etc. (c).

Identifying (I) with (c), we obtain X^n + X&quot;

1

;
and generally

X* =
(
n + r - 1 ) X&quot;_! 4- X;-

1
or X;*+1

=
(n + r) X? + X^J, the same law as of

Q in Art. 4. Also evidently X&quot;
= 1 whatever w may be, as Q =1.

Thus the top row is 1. Again by (a) making n = l,

But this is known to be x \x* + \x* \x* + etc., whence

x;=l, Xj = 2, Xj = 2.3, \i = 2.3.4,...justasQi=|w.

Thus the first column also of X agrees with that of Q. In short

then, the two tables are the same. Finally :

with coefficients already known.

The analogy to the series of Art. 8 deserves notice.

= 1-
X

3

n -5 + etc.



TRACT IV.

ON SUPERLINEARS.

SOME Apology may seem needful from me, since Dr Todhunter

in his volume on Higher Algebraic Equations has treated the same

subject under the name of &quot;Determinants.&quot; Of course I do not

pretend to add to him, nor indeed he to Mr Spottiswoode, who

carries off all merit on this subject. I read the details with much
admiration as treated by the latter, but found his notation by accents

very dazzling to the eye, in so much as to make it hard to know

by sweeping over half a page, what was the meaning of the formula

presented to one. Also I found the chief strain in argument and

chief liability to error, to turn upon the question, whether this or

that resulting term would require a plus or a minus. By reasoning
from linear functions in my own way, though less direct, I was able

to avoid this danger and lessen fatigue to my brain. When I ex

changed words with my then colleague in University College,

London, the late Professor De Morgan, on the question, why this

topic was not admitted into common Algebra, he replied, that it

was too difficult for beginners. I have since thought that he might
not have so judged, if some of the arguments were otherwise treated;

and in fact I have found, that some whom I supposed to speak with

authority thought my slight change of method easier to learners.

At the same time I must add, that on the very rare occasions in

which I have tried to teach an elementary class of mathematics,
a mode of reasoning which to one pupil was easier, to another

seemed less satisfactory. Perhaps every teacher ought to have &quot; two

strings to his bow.&quot;

32



BILINEAR TABLET
M N
P Q

1. Equations of the first degree are called simple, but when
three or more letters (x, y, z...} are involved, complexity arises with

much danger of error, even when there is no difficulty of principle.

To solve two equations of the form a
l
a + b

ly = c
1 , a^x + b

2y = c
2

is

always the same process. If we could always certainly remember the

solutions

x
A -

and never confound the indices, nor mistake between + and
,
this

alone might have much value. The modern method, due eminently
to the genius of William Spottiswoode, is quite adapted to Elemen

tary Algebra ;
but its vast range of utility cannot there be guessed.

First study the denominator D = a
l
b
z

a
2
b

l
. It arises from the

left-hand of the equation (a
l
x + b

1y = c
1 ,

in which the four letters

stand in square, as Here D is the difference of the two

productsformed diagonally, and the diagonal which slopes downward

from left to right is accepted as the positive diagonal. This is a

cardinal point. Kemember it, and you will not go wrong on + and .

Understand then, that in square with vertical sides

M N means MQ-PN.
P Q

Of course then, so does M P
N Q

,
which exchanges rows into columns.

But if you change the order of the rows, or the order of the columns,

you change the result to PN NQ, i. e. youinto P Q
M N

or N M
Q P

change D to D.

After this is fixed in the mind, it is easy to remember the

common denominator above, viz. aj)z c&A *n ^ne form a
l

b
1

Call

it C. Then the numerator of x is obtained from C by changing the

column a
t
a

2
into the column c^, making A = c

l
b

l

So B for the numerator of y is found by changing the column

bj)t
into c

t
c
2 , yielding B = a

v
c

l
.

i

a
*

C
2

A B
Finally, x= , , y= n ,

without mistake.
O
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Observe, if the equations be presented in the form

ajc + by + c,
=

; ajc + b
zy + c

a
=

;

this is equivalent to changing the signs of C
1
and C

2 ,
which does not

affect C, but exactly reverses the signs of A and B. Previously

we had

(x : A) = (1 : C)
=

(y : 5),

or
(a?

: y : 1)
= (4 : S : C) =

2 o, a ba

But from the two new equations a^x -f bjj + c^z 0} you get= 01

=0}

x : y : z

in circular order.

We may also present the solution as follows :

x

2. Simple equations are often called Linear, by a geometrical

metaphor. If a quantity u is so dependent on x, y, z... that how
ever the values of these may vary, yet always u = ax + by-\-cz+...

(where a, b, c... are numerical), then u is called a linear function of

x, y, z.,. its constituents. [One might have expected u to be called

a dependent or a resultant : but for mysterious reasons of their own,
the French have adopted the strange word function

;
and it cannot

now be altered.] It is convenient now to set forth a few properties

of linear functions. We here suppose the function to have no abso

lute (constant) term.

I. To multiply every constituent by any number (m), multiplies

the function by that number.

[For, if u = by + cz +..., then

mu = amx + bmy + cmz+]
II. If two linear functions have the same number of consti

tuents and these have the same coefficients [as U=ax + by + cz,



LEMMAS ON LINEAR FUNCTIONS.

U
l

= ax
l
+ by l

-f c^J ; you will add the functions if you join the

constituents in pairs [for here

V + L\
- a (x + ffj 4- b (y + ?/,) + c (z + ^) ;

whatever the number of constituents].

3. Observing now that a M
b N

or aN - bM is a linear function

of N and M, we see that to multiply a column MN by m multiplies
the function by m. Or a, mM

b, mN
a M
b N

The same is true if we multiply a row ; for we may regard a and

M as the variables and b and N as constant
;
then

ma, mM = m a M
b

,
N b N

This leads to the remark, that our function ought to be called

superlinear rather than linear
;
for it is open to us to suppose con

stituents alternately constant or variable.

4. Next, by making a column or row binomial, we can some

times blend two superlinear tablets into one. Thus

\A x +
!

C x

\B y D y

having the second column the same, yield,

+
,
x

B + D, y

Here the column which was in both, remains as before, but the

other columns are added and make a binomial. Evidently the same

process holds, if a row, instead of a column, is the same in both.

Conversely, when a given column is binomial, we can resolve the

tablet into two tablets
;
and when each column is binomial, we can

resolve the tablets into four.

A + x, + z

B + 1} 4- v

=
\A,

C + z

\B, JJ + v

X, C

y

by a first process. By a second, each of these tablets becomes two,

giving as result,

A C
,
+

|

A z

B D \ \B v

+
\

x z

; V
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5. THEOREM. If one column (or row) is identical with the other,

the tablet = zero. For obviously

or zero.

A A
B B

, by definition, is AB BA

COR. Equally the tablet = zero, if one column (or row) be pro

portional to the other. Thus if A : B = C : D, this proportion

yields AD = BC
\
hence

A C
B D

or A B
G D

, meaning AD BC, vanishes.

6. This sometimes usefully simplifies a tablet. Thus

is resolvable by Art. 4 into

A mC, C
B mD, D

A C
B D

mG, C . But the second

mD, D
tablet is zero, because its two columns are proportional. Hence the

given tablet simply
= A C

B D

COR. Hence an important inference. The value of a tablet is

not changed if to one column (or row) you make addition propor
tional to the other column (or row) ;

nor again if you subtract instead

of adding.

Further, if in the original equations of Art. 1, the absolute

terms c
1}

C
2
become zero, the solution for x and y is simply x = and

y = 0. This is indeed the only general solution, unless also the

denominator vanish
;
which makes x

^ , y = -r
; deciding nothing

as to the value of x or y. In that case we can equate the two

values of; viz.
j
1 = - = r3 - Conversely, this shoAvs

aj&amp;gt;9
=

aj)lt

equivalent to a^ fr
t

= 0. The last is the condition which provides

that the two equations shall be mutually consistent, though x and y
do not vanish. It results from eliminating x and y, leaving their

value arbitrary.
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7. Begin from the problem of three simple equations,

[ap + by + cjs
= 01

[a3
x + b

3y + c
3
z = OJ

These present three equations to be fulfilled by only two disposable

CT 1J

quantities, viz. - and -
,

if they are all divided by z. The three
z x

equations are not certainly self-consistent. If x, y, z be eliminated,

an equation of condition will remain. Our first business is to in

vestigate it.

From the two first equations treated as at the end of Art. 1, but

abandoning circular order, we have

x : y : z = b. c. a
i &i

aa bK

in which a, ct now replaces + of Art. 1.

In the third given equation, substitute for xyz the three quantities

now proved proportional to them, and you get

(1) s
0.

Call it V =0. Then V. is linear in aAcq . This is the condition
o 3 3 o a

that the three equations shall be compatible. It is seen to result

from eliminating x, y, z. Professor De Morgan wished to call these

tablets Eliminants. Why Gauss entitled them Determinants, no one

explains. Spottiswoode apparently introduced the excellent notation

a
l
b

l
c

l
Then F

s
is linear in a

3 , b
s ,

c
3 ,

that is,

(2) F
3
= a

2
6
2

c
2

in its third row. Hence also in any row.

a
s ^3 c

s ^3 ^s superlinear of the third order.

for the value written above. The coefficient of a
3
is obtained in (1) by

obliterating the constituents as last written that are in the same

column or row as a
3 , thus reducing F3

to ... b
l c,

then we see the tablet by which a
a
must be multiplied.



EXPANSION OF A TRILINEAR.

The same process is used with 6
3
and c

3 , producing

and

Finally the signs of the terms of F
3
are alternate

just as in the bilinear V a) a

Evidently V
3

is formed of six terms, three positive and three

negative; each term having three factors, but in no term is any
factor combined with another of its own row or its own column.

In a
l 6j i

the term aj)^cs (the diagonal sloping down from
2 ^

left to right) is positive as before. Thus when F
3
is given in con

tracted form, we can expand it into three apparent binomials.

8. In the three given equations you may exchange the position

of x and y ;
then by eliminating y, x, z you obtain

&. ., -,

= 0;

but you cannot infer that U
3
= F

3
. In fact, to exchange the a column

with the b column reverses the sign of

a, 6
2

. Thus it changes F3
into

That is, to exchange the first and second columns just reverses the

sign of F
3

. The same effect follows from exchanging any two con

tiguous columns or rows. Thus generally

Again,

A D G
B E H
G F J
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Observe, that if three binomials of F
3
are expressed by

ma
the multipliers m, n, p contain nothing of the column a

1?
a

2 ,
a

3 ,

therefore F
3

is linear in these three constituents. Evidently it is

linear in regard to any column
;
as we before saw, as to any row.

9. THEOREM. Further, / say, To exchange rows and columns

does not alter the value of F
3

. In proof, multiply the three equations

given in Art. 7, by disposable numbers m, n, p, and so assume m, n, p
that when the three products are added together the coefficients of y
and z may vanish. There will remain (ma1

+ ?ia
2
+ pa3)

x = 0, and as

we do not admit x=0, we have three equations connecting m,n,p; viz.

ajn + a
z
n + a

3p = 0&quot;

i 4- c
3p =

and that these may be compatible, we need

= 0,

by eliminating m, n, p.

Here S
3

is nothing but F
3
with rows changed to columns and

columns to rows, retaining the same positive diagonal aj) &amp;gt;2

c
3

. Every
learner will easily find by developing F3

and S
3
that they are identical:

but there is an advantage here in general argument applicable to

higher orders. S
3
= and F

3
=

0, being each a condition of compati

bility of the previous equations, must contain the same relation of the

constituents. S
3

is a linear function of its column aj)^ ;
so is F

3
a

linear function of its row aj)^. But $
3
= 0, F3

= being derivable

one from the other, there is no possible relation but S
3
=

JJL
F

3
in

which
fji
must be free from aj)^^ But the same arguments will prove

that
fji

is free from a
2
6

2
c
a ,

also from a
3
b
3
c
3

. Therefore p is wholly

numerical.

makes

Make b
1

= 0, c
l

= and this will not affect
//,.

But this

F, = a, 6, c and &amp;gt;S^

= a.

But that the two minor tablets are identical was implied in their

definition. Hence, on this assumption for ^ and c,, we find F
3
= ^

3

or /A
= l. This then is the universal value of ^ or F.,

= $, in all

rases. Q. E. D.



ON A SUPPLEMENT VANISHING.

10. In the developed value of F
3 (Art. 7) if b

s
= and c

3
= 0,

you get simply F3
= a

3 |
6
t Cj ,

which does not contain a^ or a
2

. These

I6,o,1
two constituents are made wholly inefficient by the vanishing of b

3

and c
3 , and may be changed to zero. Thus
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and the last tablet is zero, because its first and second row are

identical.

What has been said in this Article of two contiguous rows or

columns is evidently true of any two rows or any two columns, since

exchange of contiguous rows (or columns) does but multiply the

tablet by - 1.

13. The same argument as before in the Second Order now

proves that a tablet V
3

is not changed in value, if any row (or

column) receives increase or decrease proportional to some other

row (or column). Thus we have shown in F
3
the same properties as

those enunciated in F
2

.

14. NEW PROBLEM : to solve for x, y, z in the three equations

(a
t
x + bjj + c

r
z + d

v
= 0,

\a3
x + b

3y 4- c
3
z + d

3
= 0.

Assume d
t

= Ajct
c

2
= A

zx, d
a
= A

3
x. Then

(a3 4- A
3)
x + b

3y + c
3
z =

OJ

Eliminate the x, y, z here visible; then

= 0.

The last tablet may be resolved into two, namely:

A. b, i

a., ba c

= 0.

Multiply the former of these by x, and, as an equivalence, multiply

each constituent of the first column of the latter by oc,

b
s
c
3

= 0.
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In the first column of the last restore for A^c, A^x, A
z
x their

values d
1}
d

z ,
d

a
. Then if

a, b, c
2

a b ca

you have = 0,

which solves for x. By perfectly similar steps

a, d, (.

,,
C

= 0; Dz +
d

-0.

These are easy to remember: each suggests the other, by entire

symmetry. The method succeeds in Higher Orders.

-f = 5 _?
&quot;~

u ^ ~~

u
~~

u
COR. If we make

Then from

6, Cl

you obtain the proportion

f : t : u

a, 6,

15. PROBLEM. To eliminate x from the two equations

(px* + qx +r =0)

where P, Q, P, /), g ,
r may involve y or other quantities. First, put

a? = X, then we have

pX + gx + r =
OJ

Eliminate JT; i.e. solve for x;

PQ
p q

PR
p r

=
.(1).



4G TWO PROBLEMS OF ELIMINATION.

Again, writing in the original

((Px + Q)x + R =
0]

\(px + q) x + r = Oj

eliminate ,x, as if Px + Q and px + q were ordinary coefficients. Then

Px+Q,R
px +

&amp;lt;?,

r

=
0,

which expanded, gives

PxR
# r

= 0, or

p r

x -f

q r

Eliminate x between (I) and (2), which gives
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twice, (1) from the two first; (2) from the second and third. Hence

we get

aa b a

&

a, b.

from which, by eliminating x, we obtain U = 0, if we define 7 by the

equation

U ab

But, otherwise eliminated, we find, as the condition of compatibility,

Therefore U=0 contains the same relation of the constituents as

F
3
= 0. By inspection, we see that U, equally with V

B ,
is linear in

a
l5

b
lt

cr Since then U and V vanish together, we have necessarily

U=/j,.V3t in which
//,

does not involve a
lt

b
1
nor c

l
. To determine

//,,

suppose a
l
=

1, b
l
= 0, c^

=
,

a,

and 100 100
6, a,

= 1.

so that in this particular case U= b
2
V

3 , or p = b
z

. This then is the

value of
IJL

for all values of a
lt

b
lt

c
l}

or universally U=b2
.V

3 ,
while

all the nine constituents are arbitrary. Q.E.D.

18. To remember this important equation, write the square
trilinear larger and mark out its minor square. The factor b

2
is in

the centre.

By interchanging rows or columns without altering the value of

F
3 ,

fresh relations are obtained. Indeed no one constituent can

claim the central place for itself.
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Fourth Order.

19. To eliminate x, y, z, u from four given equations each of the

form ajc + b^ + c^z + d
t
u = 0, we have now much facility from the

Cor. to Art. 14. First, eliminate from the three first equations
and get the proportions of x, y, z, u. Next, insert these propor
tionate values in the fourth equation whereby you entirely eliminate

all the four, and obtain an equation V4
=

;
if F

4
stand for

6,c, -b.

This developed form of F
4
can always be recovered (by attention

to the simple rule given for developing F3)
from the conciser or

w?ideveloped form

. b, c, d.

Evidently in the definition V
4
is a linear function of a

4
6
4
c
4

c?
4

.

So then it must be of any other row, the order of the given

equations being arbitrary. Also the first term of F
4
as defined is

free from a^a^; each of the others is linear in a^a^. Therefore

F
4
in square is linear as to its first column

;
so then must it be

as to every column.

Being thus linear, if one column (or row) of such quadrilinear

tablet is binomial, it may be split into two tablets by the same

process as in the third order. Likewise to multiply any column

(or row) by m multiplies the whole tablet by m.

To exchange first and second column, exchanges the first and

second term of F
4 ,

but reverses their signs. It reverses the sign

of the third term, also of the fourth. Thus to exchange the first and

second column reverses the sign of V^. Evidently then the same

must happen by exchanging any two contiguous columns. The

same argument applies concerning any two contiguous rows.

The reasoning of Art. 12 concerning F
3
now applies to F

4 ,

showing that the tablet vanishes, if one column (or row) be pro-
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portional to another column (or row). From this it further follows

(as concerning F3
in Art. 13, and concerning F

2
in Art. 6), that

F
4
is not changed in value, if any row (or column) receive increase

or decrease in proportion to some other row (or column).

20. That F
4

is not altered by exchanging rows and columns,

is generally proved by elaborate inspection of the separate terms

when F
4

is resolved into 24 elements each of the form aJ)2
c
K
d

4 ,
no

two factors of the same row or column, and showing that the -f or ~

of the term is never altered. It is, no doubt, a perfect demonstration,

and more elementary than mine
;
but I find the less obvious ar

gument of Art. 9 the easier for all the higher orders. Multiply
the given equations by nfi

1
^

1p1 q l
and assign to these multipliers

the condition that from the sum of the equations thus multiplied

y, z and u shall disappear.

There will remain (ma^ + na^+pa^ + qa^ # = 0. But our hypo
thesis forbids x = 0, hence we have four equations to determine

mnpq, viz.

+ aji + a
3p + a^q 0,

+ 6
2
?i + b

3p + b
4q
= 0,

+ C
2
w + C

3p + C
4q 0,

+ di + d + d = 0.

When we eliminate mnpq the result, which we may call $
4
=

0,

shows S
4 differing from F

4 only in the exchange of rows with

columns. Each of them is linear in ajk^d. . Each involves the

same relations between the constituents. The equation $
4
= must

be deducible from F
4
= 0. The only possible relation, making $

4

and F
4
vanish together, has the form $

4
=

yu&amp;lt;F4 ,
in which p is inde

pendent of a^a^. But symmetry proves yu, equally independent
of every other column

;
therefore

/-t
is numerical. To find it, we

may make the constituents on the positive diagonal all =
1, and

all the other constituents vanish. Then both $
4
and F

4
= a^c^ = l

r&amp;gt;

.

Universally then, /A
=

1, or $
4
= F

4
. Therefore F

4
is not altered

by exchanging rows with columns.

Evidently this argument holds, however high the order of the

Tablet, if the successive definitions follow the same law.

N. 4
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21. We can now solve when four given simple equations con

necting xyzu have on the left side absolute terms e^e^, with zero

(as before) on the right. We proceed as in Art. 14. Let

e
l
= A ^, e

2
=

Then our equation becomes

x + b^y + c^z -f d
}

u =

.
4)
x 4- 64y + c42 + c

Eliminate x, y, z, u, then

+ A B
b
s

c
3

-H ^4 ^4 C4

The first column being binomial, we can resolve this tablet into

two. Then multiply the left tablet by x, and the first column of

the second also by x
;
whence

a, b
l

c
l
d

l

x -

a, b, c4 d,

In the second tablet we now replace its column by its value

Thus we have solved for x. By perfectly similar steps we

solve for y, for z, and for u.

Finally, if

b, c,
d

l
e

1
a

x
c

x
d

t
e
l

a
t 6,

d
1 e,

,
N=

,
P=

6
4

c4 d e a
4 C4 cZ4 e a4 b

4 d4 e4

Q= . ... .. ... ,R= .;... ...:...

we have x : y . z \ u : \ = M : N : P : Q : R.
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A
=

(6 C
3

- &
&amp;gt;(J

C
2)
F. 51

22. Take our four equations as in Art. 19. From the three first

and also from the three last eliminate both y and z
;
whence

x= da ;
and

To eliminate x from these two, we have

which we may remember by

&amp;lt;*

Thus /7
4
= and F

4
=

express the same condition of the con

stituents for reconciling the four equations.

Inspection shows that CT
4 ,

like F
4 ,

is linear in af^d^ Put

U
4
=

fjuV^, and /-6
will be free from these four. Assume then a

t
= l,

^ = Cj
=

rfj
=

0, and it will not affect p. But it makes

da

and U
t
= l

that is,

whence [7
4 generally

6.0.
. F,. This could not have been fore

seen. By varying the order of the elements, we have other results.

42



52 GENERALIZATION OF THESE PROPERTIES

Observe that is the square in the centre of F
4

. The tri-

linears in 7 are squares cut from the four corners of &quot;F

4 ;
those of the

first term in U
4 being from the positive diagonal.

23. By aid of Art. 21 we readily proceed to the Fifth Order,

with the same law of continuous formation; whence in every Order

we have these same properties.

(1) To exchange rows and columns does not affect the value

of Vn .

(2) Vn is a linear function of any one row, or any one column.

(3) If a row or column be binomial, the Vn may be split into

vnv:.

(4) To multiply a row or column by m, multiplies Vn by m.

(5) To exchange any row (or column) with a contiguous row (or

column) changes Vn to Vn .

(6) If one row (or column) is identical with or proportional to

another row (or column), the Vn
= zero.

(7) Vn is not altered in value when a row (or column) receives

increase or decrease proportioned to another row or column.

(8) If Vn be divided along the diagonal, so as to fall into four

parts, two squares and two rectangular complements, the vanishing
of one complement makes the other wholly ineffective.

24. To prove the last universally, it suffices to prove it for the

fifth order.

Call the two squares P, S and the complements Q, R. Then if

one of the complements, as Q, have all its constituents zero, I say,

R is ineffective, and V=P . S, just as ifR also had all its constituents

zero. For every term of F
5
when fully expanded, has the form

ambncpdq
er ,

where mnpqr are taken from 1, 2, 3, 4, 5 and no two are

the same. Hence a
4
6
4
c
4
and

5
6
5
c
5 (the constituents of R) are neces

sarily multiplied by one or other of the zeros (d^d^d^) in Q, and
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all the products vanish. Consequently, if P is of the third order and

S of the second, the F in question is equivalent to

000
000

and might arise from two equations separately, yielding P =
0, and

= 0. In fact V=P.S.

If Spottiswoode did not plant the first germ of this very valuable

theory, he first investigated the laws and exhibited its vast power.



TRACT V.

INTRODUCTION TO TABLES I. AND II.

To these four Elementary Tracts I have added two Numerical

Tables, solely because their compilation and verification is elemen

tary.

Table I. gives values of A~n
to 20 decimal places. Here A means

the series 2, 3, 4, ... up to 60, and the odd numbers from 61 to 77;

and n means 1, 2, 3, ... continued until A~n
is about to vanish. To

verify, use the formula

A-m
x

... A~m + -l~ A-l
The reader may convince himself how searching is this test, by

applying it, for instance, to A~n when A = 37 or when .4 = 71. Only
in the case of 2~

w and 3&quot;

w
,
where the Tablets give only odd values of

n, we must apply the formula

(A~
l + A~s + A 5 + . . . + A~ zm~l

)
= A

~ A *&quot;

.

-L 1

Table II. has values of xn
with 12 decimal places, where x means

02, -03, &quot;04 up to 50 and n is continued from 1, 2, 3,... until xn
is

insignificant. The formula of verification is (with m any integer less

than r)

(x
m + xm+l + xm+z + . . . + of) . (1

-
as)
= xm - xr+l

.

I compiled this table while working at Spence s integral

N dx
log(H-aO-,*

but it has much wider use.

One who is sagely incredulous of printed tables can verify

for himself any tablet which he is disposed to use with much greater

ease than he could compose the tablet. Thus, too, he would detect

any error from miscopying or misprinting, against which I can least

give a guarantee.
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n



56 TABLE I. TWENTY DECIMALS.

n
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n



58 TABLE I. TWENTY DECIMALS.

n



TABLE I. TWENTY DECIMALS. 59

n



60 TABLE I. TWENTY DECIMALS.

n



TA TILE I. TWENTY DECIMALS. 61

n



62 TABLE T. TWENTY DECIMALS.

n



TABLE I. TWENTY DECIMALS. G3

n
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n



TABLE I. TWENTY DECIMALS.

n



66 TABLE I. TWENTY DECIMALS.

n
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n



68 TABLE I. TWENTY DECIMALS.

I

2

3

4

6

7

8

9
10

01408 45070 42253 52213
J 9 83733 3862 3 28903

27939 90684 83506
393 51981 47655

5 54253 26023
7806 38395
109 9497

i 54858
2181

i

2

3

4

6

7

8

9
10

73&quot;

01369 86301 36986 30137
18 76524 67629 94933

25705 81748 35547
352 13448 60761

...... 4 82376 00832
6607 89052

9 5 Z95
i 23999

1699
23

n



TABLE II. TWELVE DECIMALS. 69

TABLE II. Powers of 02, 03, 04, ... up to *50, useful to compute

c + A^ -f A 3
xs + &c., when x does not exceed \.

(Twelve Decimals.)

n



70 TABLE II. TWELVE DECIMALS.

n



TABLE II. TWELVE DECIMALS.

n



72 TABLE IL TWELVE DECIMALS,

n



TABLE II. TWELVE DECIMALS.

n



74 TABLE II. TWELVE DECIMALS,

n



TABLE II. TWELVE DECIMALS. 75

n



76 TABLE II. TWELVE DECIMALS.

n



TABLE II. TWELVE DECIMALS. 77

n



78 TABLE II. TWELVE DECIMALS.

n



TABLE II. TWELVE DECIMALS.

n
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